快乐数
题目
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:
- 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
 - 然后重复这个过程直到这个数变为 1,也可能是无限循环但始终变不到 1。
 - 如果这个过程结果为 1,那么这个数就是快乐数。
 
如果 n 是快乐数就返回 True ;不是,则返回 False 。
示例 1:
输入:19
输出:true
解释:
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1示例 2:
输入:n = 2
输出:false思路
题目中说了会 无限循环,那么也就是说求和的过程中,sum会重复出现,这对解题很重要!
当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法了。
所以这道题目使用哈希法,来判断这个sum是否重复出现,如果重复了就是return false, 否则一直找到sum为1为止。
解法
func isHappy(n int) bool {
    m := make(map[int]bool)
    for n != 1 {
        if m[n] {
            return false
        }
        m[n] = true
        n = sum(n)
    }
    return true
}
 
func sum(n int) int {
    sum := 0
    for n > 0 {
        sum += (n % 10) * (n % 10)
        n = n / 10
    }
    return sum
}